



# F3.20 Датчик расхода с крыльчатым колесом для высокого давления

## Инструкция пользователя

RUS 03-15

## Содержание

| 1. | Введение                                | 2        |
|----|-----------------------------------------|----------|
|    | 1.1. Инструкция по технике безопасности |          |
| 2. | Описание                                | 2        |
|    | 2.1. Дизайн                             | .3       |
| 3. | Технические характеристики              | .3       |
|    | 3.1. Технические данные                 | 3        |
| 4. | Установка                               | . 4      |
|    | 4.1. Расположение                       | 5<br>5   |
| 5. | Фитинги для установки                   | <b>7</b> |
| 6. | Таблицы К-фактора                       | 7        |
| 7. | Данные для заказа                       | 8        |
| 8. | Сварные адаптеры процедура установки    | 9        |





#### 1. Введение



#### 1.1. Инструкция по технике безопасности

#### Общие сведения

- □ Датчик F3.20.X.XX предназначен только для измерения расхода жидкости.
- □ Не устанавливайте и не обслуживайте датчик не ознакомившись с инструкцией.
- □ Данный датчик предназначен для подключения к другим приборам, которые могут представлять опасность в случае неправильного использования. Перед использованием изделия с ними, прочитайте инструкции по всем подключенным приборам и соблюдайте их требования.
- Установка сенсора должна выполняться только квалифицированными специалистами.
- □ Не изменяйте конструкцию изделия.

#### Порядок установки и ввода в эксплуатацию

- □ Отключите электропитание датчика до начала подключения.
- Разгерметизируйте и провентилируйте систему перед установкой или снятием датчика.
- □ Проверьте химическую совместимость материала датчика контактирующего с жидкостью.
- □ Не превышайте максимальные значения температуры/давления.
- □ Для чистки датчика используйте только химически совместимые продукты.

#### 1.2. Упаковочный лист

Проверьте комплектность изделия и отсутствие повреждений. В комплект должны входить следующие элементы:

- F3.20 датчик расхода с крыльчатым колесом.
- Руководство по эксплуатации F3.20 датчик расхода с крыльчатым колесом

#### 2. Описание

#### 2.1. Дизайн

FLS F3.20 представляет собой датчик расхода с крыльчатым колесом, предназначенный для работы в системе с высоким давлением и при критической температуре. F3.20 предназначен для использования с любыми жидкостями, не содержащими твердых частиц, в соответствии со свойствами химической совместимости смачиваемых материалов. Использование первоклассных материалов, таких как нержавеющая сталь для корпуса/вала и HalarR для ротора, обеспечивает высокие механические характеристики и признанную надежность. Датчик нуждается в очень ограниченном объеме обслуживания, с ним легко обращаться, благодаря системе с 4 винтами и плоской прокладке из графита.





Датчик F3.20 доступен для подсоединения к мониторам FLS и для подсоединения непосредственно к ПЛК. Имеется привариваемый переходник из нержавеющей стали для установки датчика на трубах диаметром от 1." до 8" (от DN40 до DN200).

#### 2.2. Принцип работы

Датчик расхода состоит из преобразователя и пятилопастного гребного колеса. Крыльчатка оснащена постоянными магнитами, интегрированными в каждую лопасть. Когда магнит проходит рядом с датчиком импульсов генерируется сигнал. Когда жидкость течет в трубе, вращение крыльчатки даёт квадратичный сигнал. Частота пропорциональна скорости потока. Датчик устанавливается в трубе, с помощью широкого спектра фитингов, поставляемых производителем датчика.

#### 2.3. Совместимость с мониторами FLS

|         | Мониторы FLS |       |       |       |       |       |       |     |
|---------|--------------|-------|-------|-------|-------|-------|-------|-----|
| Датчик  | F9.00        | F9.01 | F9.02 | F9.30 | F9.20 | F9.50 | F9.51 | ПЛК |
| F3.20.H | Х            | Χ     | Х     | Х     |       | Х     | Х     |     |
| F3.20.P |              |       |       |       |       |       |       | Х   |

#### 3. Технические характеристики

#### 3.1. Технические данные

Диапазон размера труб: от DN40 до DN200

(от 0,5 до 8 дюймов). Более подробные сведения см. в

разделе установочной арматуры.

Диапазон расхода: от 0,15 до 8 м/сек. (от 0,5 до 25

футов в сек.)

Линейность: ± 0,75% от полного значения шкалы Повторяемость: ± 0,5% от полного значения шкалы

Давление: 110 бар (1600 psi) Температура: 120 °C (248 °F)

Минимально необходимое число Рейнольдса: 4500

Корпус: IP68

Смачиваемые материалы:

- корпус датчика: нерж. сталь 316L
- система уплотнения: плоская прокладка из графита
- ротор: ECTFE (HalarR)
- вал: AISI316L

#### Стандарты и допуски

Произведено согласно ISO 9002

CE





#### Особенности F3.20.Н

Напряжение питания: от 5 до 24 В пост. тока,

регулируемое

Ток питания: < 30 мА при 24 В пост. тока

Выходной сигнал:

- прямоугольная волна

– частота: номинал 45 Гц на м/сек. (13,7 Гц на фут/сек.)

- тип выхода: транзистор NPN с открытым коллектором

- выходной ток: макс. 10 мА

Длина кабеля: стандартная 8 м (26,4 фута),

максимальная 300 м (990 футов)

#### Особенности F3.20.P

Напряжение питания: от 12 до 24 В пост. тока,

регулируемое

Ток питания: < 30 мА при 24 В пост. тока

Выходной сигнал:

– прямоугольная волна

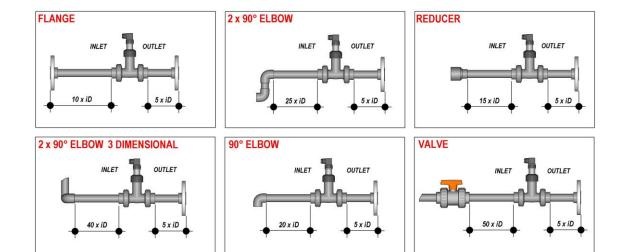
– частота выходного сигнала: номинал 45 Гц на м/сек.

(13,7 Гц на фут/сек.)

– тип выхода: двухтактный (цифровой вход NPN или PNP)

выходной ток: I вых. макс. < 20 мА</li>

Длина кабеля: стандартная 8 м (26,4 фута),


максимальная 300 м (990 футов)

#### 4. Установка

#### 4.1. Расположение

Различные конфигурации труб и препятствия в поточной линии, такие как клапаны, колена, отводы и фильтры создают вариации при установке.

При возможности необходимо следовать рекомендациям по установке датчика EN ISO 5167-1..



Всегда максимизируйте расстояние от датчика до насоса.

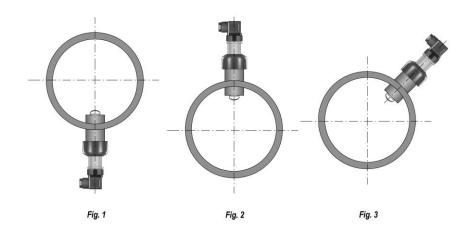




#### 4.2. Монтажное положение

Убедитесь, что трубопровод заполнен жидкостью.

□ Горизонтальные участки труб:

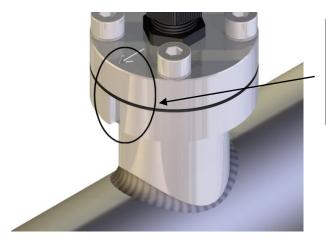

Положение. 1: Установка при отсутствии осадка.

Положение 2: Установка при отсутствии пузырьков.

Положение 3: Установка при возможном осадке или пузырьках.

Вертикальные трубопроводы:

Установка возможна при любом положении. Восходящий поток предпочтителен.




#### 4.3. Процесс подключения



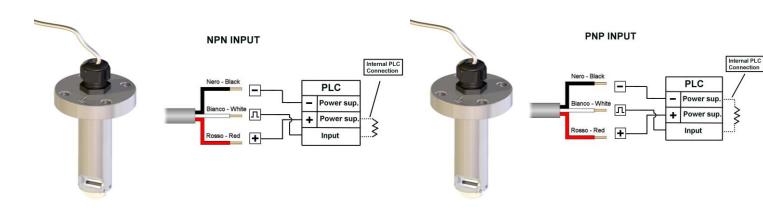
- 1. Разместите плоское плотнение, датчик и винты с шайбами. Уедитесь, что стрелка на датчике совмещена с канавкой на адаптере.
- 2. Затяните винты с силой, равной 15Нм.





Канавка на адаптере должна быть параллельна потоку. Стрелка на датчике должна совпадать с этой канавкой.

#### 4.4. Схема подключения


- □ Всегда проверяйте обесточен ли датчик перед монтажными работами.
- □ Всегда используйте качественные источники постоянного тока.



#### Может потребовать резистор на 2.7кОм.

## F3.20.P IP68 подключение к ПЛК с NPN входом.

## F3.20.Р IP68 подключение к ПЛК с PNP входом.





## 5. Фитинги для установки

| Тип                                             | Описание                             |
|-------------------------------------------------|--------------------------------------|
| Сварной адаптер из<br>нержавеющей стали<br>316L | Размер: DN 40 - DN 200 ( 1 ½" - 8" ) |

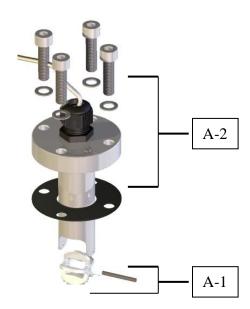
## 6. Таблицы К-фактора

К-фактором называют число импульсов датчика при прохождении одного литра измеряемой жидкости. К-фактор для воды при комнатной температуре в таблицах. К-фактор может зависеть от условий установки.

Обратитесь к своему дилеру, если не нашли нужный в таблицах.

| Сварные адаптер  | ы из нерх | к. стали 316L | Сварные адаптеры из нерж. стали 316L |     |          |  |
|------------------|-----------|---------------|--------------------------------------|-----|----------|--|
| На чугунные труб | Ы         |               | Ну другие метал. трубы               |     |          |  |
| Part No.         | DN        | K-Factor      | Part No.                             | DN  | K-Factor |  |
| WAIXL0           | 40        |               | WAIXL0                               | 40  | 36,17    |  |
| WAIXL0           | 50        |               | WAIXL0                               | 50  | 23,71    |  |
| WAIXL0           | 60        | 19,78         | WAIXL0                               | 60  |          |  |
| WAIXL0           | 65        |               | WAIXL0                               | 65  | 13,93    |  |
| WAIXL0           | 80        | 10,22         | WAIXL0                               | 80  | 9,61     |  |
| WAIXL0           | 100       | 6,01          | WAIXL0                               | 100 | 5,22     |  |
| WAIXL0           | 110       |               | WAIXL0                               | 110 |          |  |
| WAIXL0           | 125       | 3,64          | WAIXL0                               | 125 | 3,31     |  |
| WAIXL0           | 150       | 2,46          | WAIXL0                               | 150 | 2,22     |  |
| WAIXL0           | 175       |               | WAIXL0                               | 175 |          |  |
| WAIXL0           | 200       | 1,28          | WAIXL0                               | 200 | 1,23     |  |
|                  |           |               |                                      |     |          |  |

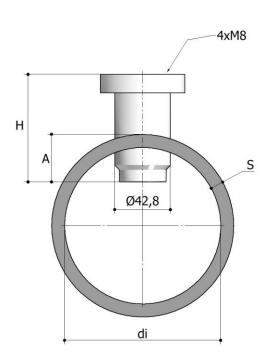



## 7. Данные для заказа

## FlowX3 F3.00.H.XX (Remote version)

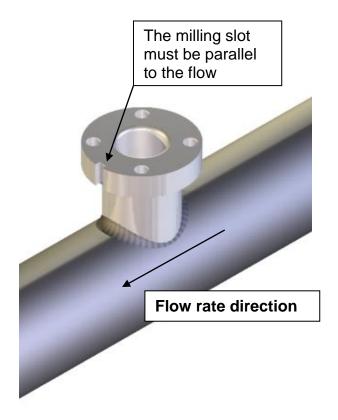
| Part No.   | Version   | Power supply | Length | Body | Enclosure |
|------------|-----------|--------------|--------|------|-----------|
| F3.20.H.01 | Hall      | 5 - 24 VDC   | L0     | INOX | IP68      |
| F3.20.P.01 | Push-Pull | 12 - 24 VDC  | L0     | INOX | IP68      |

#### **Spare Parts**


| Item | Part No. | Description                         |  |  |
|------|----------|-------------------------------------|--|--|
| A-1  | F3.SP4.3 | ECTFE (Halar) rotor with Inox Shaft |  |  |
| A-2  | F3.SP8   | flat gasket + screws                |  |  |






### 8. Сварные адаптеры процедура установки.

- Calculate the length A and mark it on the adapter.
- Measure the adapter diameter at the mark level and drill the hole in the pipe with such diameter.
- Insert the adapter into the pipe and to be sure that the milling slot is parallel to the flow (see drawing n°2)
- Weld the adapter at the above mark reference.
- See drawing n°1.



 $A = 0.12 \times di + 3.5 + S$ 

Drawing n°1



Drawing n°2











**F.I.P.** Formatura Iniezione Polimeri S.p.A. Loc. Pian di Parata, 16015 Casella (GE) – Italy Tel +39 010 96211 – Fax +39 010 9621209

www.flsnet.it

